Izixhumanisi zeCartesian ziwuhlelo lokunikeza ukupheya kwezinombolo eziodiwe, okuphindwe kathathu, noma ngaphezulu kumaphoyinti kugridi noma emkhathini, okwenza kube nokwenzeka ukuchaza izindawo zazo ngokunembile. Lolu hlelo luqanjwe ngesazi sefilosofi nezibalo saseFrance uRené Descartes, owaba nesandla ekuthuthukiseni imibono esekelwe kuso ekhulwini le17. Izixhumanisi zeCartesian zakha isisekelo sezibalo eziningi zesimanje, ijometri, iphysics, ubunjiniyela, neminye imikhakha eminingi. Ake sihlole ukuthi izixhumanisi zeCartesian ziyini, zisebenza kanjani, nokuthi kungani zibaluleke kangaka.

Umsuka Wezixhumanisi ZeCartesian

URené Descartes (1596–1650), umuntu obalulekile kuScientific Revolution, uthuthukise uhlelo lokudidiyela iCartesian njengengxenye yemizamo yakhe yokuxhumanisa ialgebra nejometri. Umbono wakhe wokuguquguquka wawuwukuthi noma yiliphi iphuzu endizeni lingachazwa kusetshenziswa izinombolo. Ngaphambi kweDescartes, igeometry yayibonakala kakhulu futhi isezingeni eliphezulu. Ukuqamba okusha kukaDescartes kwethule indlela yokulinganisa nealgebraic, kwakha ithuluzi elinamandla lokuxazulula izinkinga zejiyomethri kusetshenziswa ialgebra nokuphambene.

Umsebenzi kaDescartes washicilelwa encwadini yakhe yango1637La Géométrie, eyayichaza ukuthi izimo zejiyomethri zingachazwa kanjani ngezibalo, ngaleyo ndlela zizale lokho manje esikubiza ngokuthi ianalytic geometry. Isistimu yakhe yasebenzisa imigqa eqondile (izimbazo) ukuze ichaze indiza exhumanisayo, futhi ngalezi zimbazo, noma iliphi iphuzu elinobukhulu obubili lingase limelwe ngepheya yezinombolo eziodiwe.

Ayini AmaCartesian Coordinates?

Izixhumanisi zeCartesian zichaza iphoyinti esikhaleni zisebenzisa izinombolo ezihambelana nendawo yephuzu ngokuhlobene nemigqa yereferensi engashintshi, noma izimbazo. Imvamisa, ohlelweni lweCartesian olunezinhlangothi ezimbili, izimbazo zibizwa ngokuthi ithexaxis(evundlile) kanye neaxis(iqondile. Lezi zimbazo ziphambana endaweni ebizwa ngokuthi itheorigin, lapho kokubili \( x \) kanye \( y \) kunguziro (0,0. Indawo yephoyinti endizeni ichazwa ngezinombolo ezimbili, ngokuvamile ezibhalwe kubakaki ngokuthi (x, y), ezichaza ukuthi iphuzu likude kangakanani nomsuka weeksisi ngayinye.

Isibonelo:Uma iphoyinti lichazwa ipheya yokuxhumanisa (3, 4), lokhu kusho ukuthi iphuzu lingamayunithi amathathu kwesokudla semvelaphi (ngokuhambisana neeksisi engux) namayunithi amane phezulu (kanye noy ekseni.

Kuleli cala elilula lezinhlangothi ezimbili, izixhumanisi zisitshela indawo ngqo yephoyinti endizeni eyisicaba. Kodwa izixhumanisi zeCartesian zingaphinda zichaze amaphuzu ngobukhulu obuphakeme, njengesikhala esinezinhlangothi ezintathu, noma izikhala zezibalo ezingabonakali.

Izingxenye Ezibalulekile Zezixhumanisi ZeCartesian
  • Amaeksisi: Imigqa yereferensi emibili eyinhloko ebukhulu obubili ibizwa ngokuthi ieksisi x (evundlile) kanye neyeksisi (emile. Ngobukhulu obuthathu, sethula umugqa wesithathu, iaxis enguz, ngokuvamile emelela ukujula. Zonke izimbazo ziyaphambana emsukeni, okuchazwa ngokuthi (0, 0) ku2D noma (0, 0, 0) nge3D.
  • Umsuka: Iphuzu lapho izimbazo zihlangana khona libizwa ngokuthi umsuka. Yindawo eyinkomba lapho zonke izikhundla zikalwa khona.
  • Izixhumanisi: Ngobukhulu obubili, iphoyinti ngalinye linox coordinate (indawo yalo evundlile) kanye noy coordinate (indawo yayo eqondile. Ngobukhulu obuthathu, amaphuzu achazwa yizixhumanisi ezintathu (x, y, z), ezichaza izindawo ezihambisana nezimbazo ezingux, y, kanye noz.
  • Amaquadrants: Indiza yeCartesian ihlukaniswe izifunda ezine ezibizwa ngokuthi amaquadrants, ngokusekelwe ezimpawini zezixhumanisi zikax kanye noy.
    • IQuadrant I: Kokubili ux kanye noy kuphozithivu.
    • IQuadrant II: ux unegethivu, uy uphozithivu.
    • IQuadrant III: Kokubili ux kanye noy kunegethivu.
    • IQuadrant IV: ux uthi positive, y unegethivu.

Izixhumanisi zeCartesian ngobukhulu obubili (2D)

Kusistimu ye2D Cartesian, amaphuzu atholakala endaweni eyisicaba kusetshenziswa inombolo eodiwe yezinombolo (x, y. Nakhu ukuthi kusebenza kanjani:

  • UThexcoordinate utshela ukuthi kufanele uye kude kangakanani ukusuka kwesokunxele noma kwesokudla ukusuka lapho usuka khona.
    • Amanani aqondile aya kwesokudla.
    • Amanani angalungile aya kwesokunxele.
  • Baqondisa ukuthi kukude kangakanani ukuya phezulu noma phansi.
    • Amanani amahle aya phezulu.
    • Amanani angalungile ashona phansi.

Isibonelo:Iphuzu (5, 2) lisitshela ukuthi sihambise amayunithi angu5 kwesokudla (sihambisana neeksisi engux) kanye namayunithi angu2 phezulu (ngokuhambisana neeksisi kay) ukusuka kumvelaphi.

Ifomula Yebanga

Ibanga eliphakathi kwamaphoyinti amabili (x1, y1) kanye (x2, y2) endizeni yeCartesian lingabalwa kusetshenziswa ifomula yebanga elithathwe kumbono wePythagorean:

d = √(x2 x1)² (y2 y1)²)

Le fomula iwukusetshenziswa okunamandla kwezixhumanisi zeCartesian kugeometry, okuvumela ukukalwa okunembile kwamabanga phakathi kwamaphoyinti.

IMidpoint Formula

Iphoyinti elimaphakathi lesegimenti yomugqa enamaphoyinti okugcina (x1, y1) kanye (x2, y2) ibalwa ngesilinganiso sezixhumanisi zamaphoyinti okugcina:

M = (x1 x2)/2, (y1 y2)/2)

Ifomula yephoyinti eliphakathi inikeza indlela yokuthola isikhungoiphuzu lengxenye yomugqa phakathi kwamaphoyinti amabili endizeni.

Izixhumanisi zeCartesian ngobukhulu obuthathu (3D)

Uma isebenza ngezinhlangothi ezintathu, isistimu yokudidiyela yeCartesian ihlanganisa ieksisi yesithathu, ebizwa ngokuthi ithezaxis, emele ukujula. Izimbazo ezintathu zincikene kwelinye, zakha igridi ye3D. Iphuzu ngalinye esikhaleni esinezinhlangothi ezintathu lichazwa izixhumanisi ezintathu: (x, y, z.

  • UThexcoordinate utshela ukuthi kufanele uye kude kangakanani kwesokunxele noma kwesokudla.
  • Baqondisa ukuthi kukude kangakanani ukuya phezulu noma phansi.
  • IThezcoordinate itshela ukuthi kuyibanga elingakanani ukuya phambili (positive z) noma emuva (negative z.

Isibonelo: Iphuzu (3, 4, 5) lisitshela ukuthi sihambise amayunithi angu3 kwesokudla, amayunithi angu4 phezulu, namayunithi angu5 siye phambili ukusuka lapho kuvela khona.

Ibanga nge3D

Ibanga eliphakathi kwamaphoyinti amabili (x1, y1, z1) kanye (x2, y2, z2) esikhaleni se3D isandiso sefomula yebanga le2D:

d = √(x2 x1)² (y2 y1)² (z2 z1)²)

Le fomula ilandisa ubukhulu besithathu, inika amandla izibalo ezinembile zebanga phakathi kwamaphoyinti esikhaleni.

Izinhlelo zokusebenza zeCartesian Coordinates

Isistimu yokudidiyela yeCartesian inohlu olubanzi lwezinhlelo zokusebenza kuyo yonke imikhakha eyahlukene. Ezinye zezinhlelo zokusebenza ezivame kakhulu nezibalulekile zifaka:

1. Ijometri neAlgebra

Izixhumanisi zeCartesian zivumela ukumelwa komumo wejiyomethri (imigqa, imibuthano, amaparabola, njll) ngezibalo zealgebraic. Isibonelo, isibalo sendilinga esinobubanzi obuyirfuthi maphakathi kokuthi (h, k) sithi (x h)² (y k)² = r². Ifomu lokunqamula ukuthambeka lomugqa, y = mx b, lapho imiwumthambeka futhi ibiwuyintercept, isekelwe ekuhlanganiseni kweCartesian.p> 2. Imifanekiso Yekhompyutha

Kumifanekiso yekhompuyutha, izixhumanisi zeCartesian zisetshenziselwa ukuchaza ukuma kwamaphikseli esikrinini nokwenza izinguquko ezifana nokuhumusha, ukuzungezisa, nokukalwa kwezithombe.

3. IPhysics

Kuphysics, izixhumanisi zeCartesian zibalulekile ekuchazeni ukunyakaza, amandla, nezinkambu kuzo zombili izinhlangothi ezimbili nezintathu. Isibonelo, ukunyakaza kwenhlayiyana endizeni kungachazwa ngokuma kwayo (x(t), y(t) njengemisebenzi yesikhathit.

4. Ubunjiniyela kanye namarobhothi

Onjiniyela basebenzisa izixhumanisi zeCartesian ukuze benze imodeli futhi balingise amasistimu aphathekayo. Kumarobhothi, ukuma nokuma kwengalo yerobhothi emkhathini kuvame ukuchazwa kusetshenziswa izixhumanisi zeCartesian.

5. Izicelo zeGeospatial

AmaGeographic Information Systems (GIS) asebenzisa izixhumanisi zeCartesian ukuze enze imephu yezindawo endaweni yomhlaba. Nakuba ilatitude nelongitude kuvame kakhulu ekwenzeni imephu enkulu, amagridi endawo avame ukusebenzisa izixhumanisi zeCartesian.

Izinguquko Ezididiyelweni ZeCartesian

Izinguquko ziyimisebenzi enyakazayo noma eshintsha izibalo endizeni exhumanisayo. Izinhlobo ezijwayelekile zokuguqulwa zihlanganisa:

  • Ukuhumusha: Ukuhambisa iphoyinti noma isibalo ngokungeza inani elifanayo kusixhumanisi ngasinye.
  • Ukuzungezisa: Ukuguqula iphoyinti noma umfanekiso uzungeze umsuka ngeengeli ethile.
  • IReflection: Phendula iphoyinti noma umfanekiso phezu komugqa, njengeaxis engux noma iyeksisi.
  • Ukukala: Ukunweba noma ukunciphisa isibalo ngokuphindaphinda izixhumanisi ngokungaguquki.

Lezi zinguquko zibalulekile emikhakheni efana nezithombe zekhompuyutha, lapho zisetshenziselwa ukukhohlisa umumo nezinto.

Izixhumanisi zeCartesian ngobukhulu obuphakeme

Nakuba sivamise ukusebenzisa izixhumanisi zeCartesian ngobukhulu obubili noma obuthathu, umqondo unganwetshwa kunoma iyiphi inombolo yobukhulu. Ohlelweni lwe4D Cartesian, amaphuzu achazwa ngezinombolo ezine ( x, y, z, w ), lapho iwimele ubukhulu besine. Eqinisweni, izixhumanisi zeCartesian zingasetshenziswa ukuchaza amaphuzu kundimensional space, okubalulekile emikhakheni efana nesayensi yedatha, ukufunda ngomshini, kanye netheoretical physics.

Ngaphandle Kwejiyomethri: Izixhumanisi zeCartesian Ezizindeni Ezihlukene

Isistimu yeCartesian coordinate ayigcini nje kwizibalo noma igeometry kuphela. Ukusetshenziswa kwayo kuhlanganisa izizinda eziningi, okuhlanganisa iphysics, isayensi yekhompiyutha, ubunjiniyela, ezomnotho, kanye nebhayoloji. Ngokuhlinzeka ngendlela yokuhlela idatha nesikhala ngokuhlelekile, izixhumanisi zeCartesian zisenza sikwazi ukumodela, ukuhlaziya, nokuxazulula izinkinga eziyinkimbinkimbi kulezi zindawo. Kulesi sigaba, sizohlola ukusetshenziswa okuhlukahlukene kwezixhumanisi zeCartesian emikhakheni eyahlukene yesayensi nengokoqobo.

1. IPhysics kanye Nemishini

Kuphysics, izixhumanisi zeCartesian zibalulekile ekwenzeni imodeli yokunyakaza kwezinto, amandla, nezinkambu kuzo zombili izikhala ezinezinhlangothi ezimbili nezintathu. Kungakhathaliseki ukuthi ukuhamba kwemoto, ukuzungeza kweplanethi, noma ukuziphatha kwenkundla kazibuthe, izixhumanisi zeCartesian zihlinzeka ngohlaka lokuhlaziya lezi zenzakalo ngobuningi.

1.1 Kinematics: Echaza Ukunyakaza

Olunye lwezinhlelo zokusebenza ezibaluleke kakhulu zeCartesian coordinates kuphysics iinkinematics, ucwaningo lwemotion. Kukinematics, ukuma kwento emkhathini kuvame ukuchazwa kusetshenziswa izixhumanisi zeCartesian. Isibonelo, indawo yezinhlayiyana nganoma yisiphi isikhathi ingamelwa izixhumanisi zayo (x(t), y(t), z(t), laphotimele isikhathi nemisebenzi x (t), y(t), kanye noz(t) zichaza ukuthi indawo ishintsha kanjani ngokuhamba kwesikhathi.

Isibonelo, uma into ihamba ngezilinganiso ezimbili endizeni, ukuma kwayo nganoma yisiphi isikhathitkungase kuchazwe zibalo ezilandelayo:

x(t) = v_x t x_0 y(t) = 1/2 a_y t² v_y t y_0

Lapha, iv_x kanye nev_y izingxenye zesivinini sento kumaeksisi angux kanye noy, a_y ukusheshisa eduze kweeksisi kay (njengamandla adonsela phansi), futhi ux_0 kanye noy_0 yizindawo zokuqala. Ngokusebenzisa lawa mafomula asekelwe eCartesian, singakwazi ukulandelela ngokunembile ukunyakaza kwento, isivinini, kanye nokusheshisa kwayo ngokuhamba kwesikhathi.

1.2 INewtonian Mechanics neCartesian Coordinates

Omakhenikha beInNewtonian, amandla nokunyakaza kuvame ukuhlaziya kusistimu yokuhlanganisa yeCartesian. Umthetho wesibili kaNewton, F = ma, usetshenziswa ngokujwayelekile ngokwephula amandla kanye nokusheshisa ezingxenyeni zabo zeCartesian. Isibonelo, uma amandla asetshenziswa ngeengeli entweni, sibhidliza lawo mandla ezingxenyeni zawo ezivundlile (x) nezime mpo (y), bese sisebenzisa izibalo zokunyakaza kueksisi ngayinye ngokuzimela.

1.3 Izinkambu zeVector kanye Nezixhumanisi zeCartesian

Ezindaweni ezifana nozibuthe kagesi kanye nokuguquguquka koketshezi, amanani abonakalayo afana nesivinini, izinkundla zikagesi, nezinkundla kazibuthe kuvame ukuchazwa kusetshenziswa izinkambu zevector. Inkundla yevector yabela ivector kuyo yonke indawo emkhathini, futhi izixhumanisi zeCartesian zisetshenziselwa ukumela lawa mavector.

Isibonelo, inkambu kagesi enguE kunoma iyiphi indawo emkhathini ingachazwa ngezingxenye zayo eduze kwamaeksisi angux, y, kanye noz:

E(x, y, z) = E_x(x, y, z) î E_y(x, y, z) ĵ E_z(x, y, z) k̂

Lapha, uE_x, E_y, kanye noE_z bamele izingxenye zenkambu kumaeksisi afanele, futhi uî, ĵ, kanye nok̂ amayunithi amayunithi ahambisana nalawo mazembe. Sisebenzisa lokhu kwakhiwa, singachaza ukuthi inkambu kagesi ihluka kanjani endaweni yonke, sihlaziye indlela eziphatha ngayo, futhi sibale amandla ewasebenzisayo ezinhlayiyeni ezishajikiwe.

1.4 Ukunyakaza Okujikelezayo Kuzixhumanisi ZeCartesian

Nakuba izixhumanisi zeCartesian zifaneleka kakhulu ngokwemvelo ukuchaza ukunyakaza komugqa, zingaphinda zisetshenziselwe ukuhlaziya ukunyakaza okujikelezayo ngokwethula ubuningi beangular. Esikhaleni esinezinhlangothi ezintathu, ukuma kwento ezungezayo kungachazwa izixhumanisi zeCartesian, futhi ukuzungezisa kwento kungahlaziywa kusetshenziswa amavector afana netheangular velocityω kanye nomfutho weangularL.

Lawa manani achazwa kusetshenziswa imikhiqizo ephambanayo, ethatha amavector amabili futhi ikhiqize ivector yesithathu encike kukho kokubili. Umkhiqizo ophambanayo uwumsebenzi obalulekile ekuhlaziyeni ukunyakaza okujikelezayo, futhi udlala indima ebalulekile ekuqondeni itorque, amandla okujikeleza, nemiphumela yegyroscopic.

2. Isayensi Yekhompyutha Nezinhlelo

Kusayensi yekhompuyutha, izixhumanisi zeCartesian zisetshenziswa kakhulu kuyo yonke into kusukela kuzithombe ze2D ne3D ukuya kuzizindalwazi zendawo, amaalgorithms, nobuhlakani bokwenziwa. Ubulula nokuguquguquka kwezixhumanisi zeCartesian kuvumela abahleli bezinhlelo ukuthi benze imodeli futhi balawule izinto endaweni ebonakalayo nesemhlabeni wangempela.

2.1 Imifanekiso Nokuthuthukiswa Kwegeyimu

Ukuthuthukiswa kwegraphicsandgame yekhompyutha, izixhumanisi zeCartesian zakha isisekelo sokudala nokubonisa izinto esikrinini. Iphikseli ngalinye esikrinini sekhompuyutha lingamelwa kusetshenziswa izixhumanisi zeCartesian, ngomsuka ovame ukutholakala ekhoneni eliphezulu kwesokunxele sesikrini ezinhlelweni zokusebenza ze2D noma maphakathi nesigcawu ezindaweni ze3D.

Isibonelo, kugeyimu yeplatform ye2D, indawo yomlingisi womdlali ingase imelwe izixhumanisi zeCartesian (x, y), ezibonisa ukuthi uhlamvu ukude kangakanani nomsuka wezikhombisindlela ezivundlile nezime mpo. Injini yegeyimu isebenzisa lezi zixhumanisi ukuze inikeze umlingisi endaweni efanele esikrinini, futhi ibuyekeza izixhumanisi ngesikhathi sangempela njengoba umlingisi ehamba.

Kuzithombe ze3D, izixhumanisi zeCartesian zisetshenziselwa ukuchaza ukuma kwamavertices, okungamaphuzu ekhona ezinto ze3D. Ngokukhohlisa lezi zixhumanisi, onjiniyela bangakha izimo eziyinkimbinkimbi, basebenzise ukuguqulwa (okufana nokuzungezisa, ukukala, nokuhumusha), futhi bakhiqize izigcawu ze3D esikrinini se2D besebenzisa amasu afana nokuqagela kokubuka.

2.2 Qondisa Amasistimu KumaAlgorithms Nezakhiwo Zedatha

Izixhumanisi zeCartesian nazo zidlala indima kumaalgorithms ahlukahlukene kanye nesakhiwo sedatha esetshenziselwa ukuxazulula izinkinga zendawo. Isibonelo, imininingo egciniwe yendawo kanye nealgorithm yokusesha isebenzisa izixhumanisi zeCartesian ukuze kugcinwe kahle futhi kutholwe ulwazi mayelana nezinto ezisemkhathini.

Isibonelo esisodwa salokhu yithequadtree, isakhiwo sedatha esisetshenziselwa ukuhlukanisa isikhala esinezinhlangothi ezimbili sibe izifunda ezincane. Kuquadtree, inodi ngayinye imelela urisifunda esiyiectangular endizeni yeCartesian, futhi isihlahla sihlukaniswe ngamaquadrants amane amancane njengoba kudingeka. Amaquadtrees avame ukusetshenziswa ezinhlelweni ezifana nezinhlelo zolwazi lwendawo (GIS), lapho avumela khona ukubuza nokuphathwa kwamadathasethi amakhulu.

2.3 Ukufunda ngomshini kanye nobuhlakani bokwenziwa

Ekufundweni komshini nakubuhlakani bokwenziwa, izixhumanisi zeCartesian zivame ukusetshenziselwa ukumela amaphuzu edatha esikhaleni seafeature. Isibonelo, ekufundeni okugadiwe, iphoyinti ledatha ngalinye lingase lichazwe izici ezimbalwa, futhi lezi zici zingaphathwa njengezixhumanisi endaweni yeCartesian enobukhulu obuphezulu.

Cabangela imodeli yokufunda yomshini ebikezela amanani ezindlu ngokusekelwe ezicini ezifana nesithombe esiyisikwele kanye nenani lamagumbi okulala. Indlu ngayinye ingamelwa njengephoyinti endaweni yesici ye2D, lapho ixcoordinate ihambisana nesithombe esiyisikwele, futhi iycoordinate ihambisana nenani lamagumbi okulala. Amamodeli ayinkimbinkimbi kakhulu angase afake izici ezengeziwe ngakho amele amaphuzu edatha endaweni enobukhulu obuphakeme.

Ngokuphatha amaphoyinti edatha njengezixhumanisi esikhaleni seCartesian, amaalgorithms okufunda komshini afana nomakhelwane abaseduze(KNN) angasebenzisa izimiso zejiyomethri ukuze ahlukanise amaphuzu edatha noma enze izibikezelo. Isibonelo, iKNN ithola idatha eseduze ikhomba iphuzu elisha ngokubala amabanga phakathi kwamaphoyinti esikhala sesici, ngokuvamile isebenzisa iEuclidean distanceformula, esuselwe kumbono wePythagorean.

3. Ubunjiniyela kanye namarobhothi

Kubunjiniyela, izixhumanisi zeCartesian zibalulekile ekuklameni, ekuhlaziyeni, nasekufaniseni amasistimu aphathekayo, kuyilapho kumarobhothi, asetshenziselwa ukulawula ukunyakaza nokuma kwezingalo zamarobhothi, amadrones, namanye amadivayisi.

3.1 Ubunjiniyela Besakhiwo

Ubunjiniyela bezokufundisa, izixhumanisi zeCartesian zisetshenziselwa ukwenza imodeli yezindawo zemishayo, amalunga, nezinye izici esakhiweni. Ngokunikeza izixhumanisi endaweni ngayinye esakhiweni, onjiniyela bangahlaziya amandla asebenza esakhiweni, babale izingcindezi nobunzima, futhi bathuthukise umklamo ukuze uthole amandla nokuzinza.

IFinite element analysis (FEA) iyindlela yokubala evame ukusetshenziswa kubunjiniyela besakhiwo ukulingisa indlela uhlaka oluzoziphatha ngayo ngaphansi kwemithwalo ehlukahlukene. KuFEA, isakhiwo sihlukaniswa sibe yimesh yezakhi ezincane, futhi izixhumanisi zeCartesian zisetshenziselwa ukuchaza ukuma kweelementi ngayinye namanodi ayo. Ngokuxazulula isistimu yezibalo ngokusekelwe kulawa macoordinates, onjiniyela bangabikezela ukuthi isakhiwo sizolimala kanjani, lapho singase sehluleke khona, nendlela yokuthuthukisa ukwakheka kwaso.

3.2 Amarobhothi kanye Nokuzenzakalela

Kumarobhothi, izixhumanisi zeCartesian zisetshenziselwa ukulawula ukuma nokunyakaza kwamasistimu erobhothi. Isibonelo, ingalo yerobhothi yezimboni ingase ihlelwe ukuthi iye endaweni ethile esikhaleni se3D, esichazwa izixhumanisi zayo zeCartesian (x, y, z. Ngokuthumela imiyalelo esekelwe kulawa macoordinates, irobhothi lingakwazi ukuzibeka kahle futhi lilawule izinto.

Amasistimu amarobhothi amaningi asebenzisa amarobhothi eCartesian, awaziwa nangokuthi amarobhothi anjengeasgantry, ahamba ngezimbazo ezigxilile zomugqa (x, y, kanye noz. Lawa marobhothi ajwayele ukusetshenziswa ezinhlelweni ezifana nokukhetha nendawo, lapho irobhothi lidinga ukuhamba ezindleleni eziqondile ukuze licoshe izinto endaweni ethile futhi lizibeke kwenye.

3.3 Izinhlelo Zokulawula

Ubunjiniyela bezinhlelo zokulawula, izixhumanisi zeCartesian zivame ukusetshenziselwa ukumodela isimo sesistimu kanye namaalgorithms okulawula ukwakheka aqondisa ukuziphatha kwesistimu. Isibonelo, kudrone noma imoto yasemoyeni engaphethwe muntu (iUAV), indawo nokuma kwedrone kuchazwa kusetshenziswa izixhumanisi zeCartesian, futhi amaalgorithms okulawula asebenzisa lolu lwazi ukuze azinzise idrone nokuyizulazula emkhathini.

Isiphetho

Isistimu yeCartesian coordinate, enohlaka lwayo olulula kodwa olunamandla lwezimbazo nezinombolo, iyithuluzi elibaluleke kakhulu kwizibalo, isayensi, nobuchwepheshe. Kusukela endimeni yayo yokuqala ekuxhumaniseni ialgebra nejiyomethri ekusetshenzisweni kwayo kwesimanje kumultivariable calculus, algebra linear, ihluzo zekhompyutha, nephysics, izixhumanisi zeCartesian ziyaqhubeka nokuhlinzeka ngolimi lomhlaba wonke lokuchaza umhlaba osizungezile.

Ngezixhumanisi zeCartesian, singakwazi ukushintsha kalula phakathi kwezikhala zezibalo ezingabonakali nezehlakalo zomhlaba wangempela, senze kube nokwenzeka ukuxazulula izinkinga eziyinkimbinkimbi, ukudala imiklamo eyinkimbinkimbi, futhi sihlole ubukhulu obusha bokuqonda. Ukuzivumelanisa nezimo kohlelo, kungaba kuzinhlangothi ezimbili, ezintathu, noma ngisho nangaphezulu, kuqinisekisa ukuthi luhlala luyisisekelo semicabango yesayensi yesimanje nokuthuthukiswa kobuchwepheshe.

Kungakhathaliseki ukuthi uhlela umugqa olula kugrafu, ubala umkhondo wendizamkhathi, noma unikeza imodeli ye3D kugeyimu yevidiyo, izixhumanisi zeCartesian ziyithuluzi elibalulekile elivala igebe phakathi kwezinombolo nesikhala, okusenza sikwazi ukulinganisa, hlola, futhi ulolonge umhlaba ngezindlela ezimangalisayo.